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Direct free energy minimization methods:
application to grain boundaries

By A.P. Surron
Department of Materials, Oxford University, Parks Road, Oxford 0X1 3PH, UK.

PN

A critical review is given of recently developed methods for determining the atomic
structures and solute concentration profiles at defects in elemental solids and
substitutional alloys as a function of temperature. Exact results are given for the
effective force on an atom arising from the vibrational entropy in the quasiharmonic
approximation and for the occupancy of a site in the pair potential approximation.
An improved, approximate formula is given for the effective force arising from the
vibrational entropy. The mean field approximation that is used in the alloy problem
is compared with the auto-correlation approximation. It is shown that the better
statistical averaging of the auto-correlation approximation leads to effective pair
interactions that are temperature and concentration dependent.
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1. Introduction

Kinetic, mechanical and electrical properties of grain boundaries in most (possibly
all) materials vary markedly with temperature and purity of the specimen. In
elemental bicrystals the excess vibrational entropy of an interface can drive grain
boundary phase transformations. The introduction of minute quantities of impurities
can result in strong grain boundary segregation and dramatic changes in grain
boundary properties. The modelling of such processes entails the consideration of the
appropriate free energy and its minimization with respect to the atomic coordinates
and the local impurity concentration. This is a formidable task because of the five
dimensional parameter space that characterizes the orientation of the boundary
plane and the misorientation between the crystal lattices. Faced with such a task it
is essential to focus on trends in behaviour and to avoid excessively detailed studies
of a few rather special cases (for an example of such an approach see Sutton (1991)).
In this paper I review some new methods that involve direct minimization of free
energy functionals (Sutton 1989; LeSar et al. 1989; Najafabadi et al. 1991a,b). The
much greater computational speed of these methods, compared with other available
techniques (see Rickman & Phillpot 1991, and references therein), and the relative
ease with which all excess thermodynamic state variables are obtained, offer the
greatest feasibility for exploring trends in behaviour. My purpose is to give a more
thorough discussion than has so far appeared of the approximations and physical
assumptions involved in these new methods.

The essence of the ‘direct methods’ is (i) to write down a functional form for the
free energy of the system, in terms of microscopic variables such as the average
atomic coordinates and atomic site occupancies, at a given temperature, pressure
and set of chemical potentials, and (ii) to minimize this functional form by using the
derivatives of the free energy with respect to the microscopic variables. The
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234 A. P. Sutton

computational effort is little more than that involved in a minimization of the energy
of a system at 0 K, and standard steepest descent, conjugate gradient or variable
metric energy minimization techniques may be used.

2. Direct free energy minimization in an elemental solid

Here the issue is the determination of the atomic structure and excess
thermodynamic quantities of a grain boundary (or some other defect) in an elemental
solid at an elevated temperature. Since atoms are vibrating we have to define what
we mean by the atomic structure. This is true even at 0 K owing to the zero point
energy. We mean the time averaged positions of the atoms, assuming that the system
is in thermodynamic equilibrium, and assuming that diffusion does not take place.
The time averaged structure is what is measured in an X-ray diffraction experiment
for example. As the temperature changes the time averaged positions of the atoms
change until the time averaged forces on them are zero. The time averaged forces
vary with temperature because of the anharmonicity of the atomic interactions. The
time averaged structure may be determined, therefore, by requiring that the time
averaged force on each atom is zero. By ergodicity the time averaged value of a
quantity is identical to the ensemble average. The ensemble average of the force on
an atom is equal to the negative of the gradient of the ensemble free energy with
respect to its position. Thus, by expressing the free energy of the system as a function
of the average atomic coordinates, we can obtain the time averaged structure
directly by simply minimizing the free energy with respect to the position of each
atom (Sutton 1989; LeSar et al. 1989).

It is emphasized that it is assumed that each atom never leaves its own potential
well. More precisely, the curvature of the potential energy of each atom, evaluated
at its equilibrium position, is assumed to be positive definite, and therefore the
system is mechanically stable. Thus no diffusion is allowed and the theory is
therefore inapplicable to liquids, or to those solids or molecules where there are two
adjacent minima in the potential energy (as a function of some coordinate in the
system) separated by an energy barrier comparable to k7', no matter how close those
minima are in configurational space. Such double potential wells are important in the
low temperature thermodynamics of amorphous solids, and they may also exist at
crystalline defects such as grain boundaries.

Rewriting the free energy

In general, it is necessary to make an approximation in order to write down the
free energy of the system as a function of the average atomic positions. In the
harmonic approximation the potential energy is expanded to second order in the
displacements of the atoms from their mean positions. Let u,, be the displacement
of atom ¢ in the a direction («¢ = x,y or z) from the equilibrium positions ;. The
potential energy is given by

Ep = Ep(rl’ “"rN)_Zfiocauia+%zzpiaj/fuiauj/f’ (21)

o o jp
where f;, = —0K,/0r,, and D, = 0*E /0r, 0r;, are evaluated at the equilibrium
positions. It follows that f;, are all zero. The potential energy K is expressed either
in terms of some interatomic potential, such as a sum of pair potentials or N-body
potentials, or as the potential energy surface defined by an electronic structure
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Direct free energy minimization methods 235

calculation. Writing u,,(f) as u,, e'“’, the equations of motion may be expressed as

follows: -
W, = 2D;5%4 (2.2)
B

where ,, is equal to 4/ (m,) u,,; and Dwy 518 equal to Dy,;5/+/ (m; m;), and m is the mass
of atom 4. The eigenvalues »j may be determined by solving the secular deter-
minant det (w2 —D) = 0 and the normalized eigenvectors @{™ may then be
obtained from (2.2) by setting w?® equal to 3. The total dens1ty of states is given
by Y(0?) =X, 8(w?—w?). The Helmholtz free energy is given by

ho
F=EK +/cTJ Nw ln|:281nh(4 IcT)]dw (2.3)

where the density of states N(w) is related to the density of states Y(w?) by
Y(w?) = N(w)/2w. The equilibrium position ¢ is given by the condition that —V, F = 0.
From (2.3) for the free energy we see that there are two contributions to —V,F
The first is the temperature independent force due to the potential energy —V, K.
This is the force that we would consider in the absence of any vibratory motion
of the atoms. The second contribution, —V,(F —£ ), is temperature dependent and
arises from the fact that the density of states changes as atom ¢ undergoes a virtual
displacement because elements of the matrix D change. This contribution is not zero
even when 7= 0 owmg to the zero point motion of the atoms. The changes in the
matrlx D as an atom is dlsplaced are due to the anharmonlclty of the potential energy

- Thus, although the expansion of the potential energy is carried out to only second
order in the atomic displacements, the matrix elements D;,;, vary as the equilibrium
atomic positions change because of higher order derivatives of the potential energy.
For this reason we are really discussing quasiharmonic theory.

Expressions of the temperature dependent force

Approximate solutions for —V,(F —E,) have appeared (Sutton 1989; LeSar et al.
1989), but before we outline them we give the exact solution. Using (2.2) and (2.3) it

may be shown that -
—V.(F—E,) =—trpV,D, (2.4)

where tr denotes trace and the elements of the matrix p are

Pipra = 22 (2 )u%‘) )" (2.5)

n

The sum over n is taken over all normal modes of the system and #(w,,) is the internal
energy associated with the nth normal mode:

hw, 1
Hlon) = ‘27('2‘+exp (i 2kT) — 1)‘ (2.6)

It is clear from (2.4) that —V,(F —K) is non-zero only if the potential has non-zero
third derivatives and is therefore anharmonic. The force diverges if any normal mode
frequency approaches zero, which indicates that the system must be mechanically
stable to avoid such singularities. In (2.4) the 3N x 3N matrix D must be diagonolized
where N is the number of atoms in the cluster. If periodic boundary conditions are
used NV is the number of atoms in the unit cell and the matrix D has to be diagonolized

Phil. Trans. R. Soc. Lond. A (1992)
[ 41 ]


http://rsta.royalsocietypublishing.org/

\
A
[\
N

A

a

//\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

236 A. P. Sutton

at an appropriate number of k-points in the Brillouin zone. The more approximate
methods outlined below were developed to avoid the diagonalization of such large
matrices. In the classical limit where k7' > hw/2n the free energy equation (2.3))
becomes

oYY o~
Fclass = Ep+3len [(W) |D|6:| (27)
and eqn. (2.4) becomes
— Vil oss—Ep) = =S4TV, Inw? = — kT V,In|D|, (2.8)
n

where |D| is the determinant of the 3N x 3N matrix D.

Einstein models

LeSar et al. (1989) approximate (2.7) with an Einstein model in which |D| becomes
a product of N 3 x 3 determinants, |D,|, one for each atom. They called this the ‘local
harmonic model’, but I feel ‘classical Einstein model’ is more apposite. The matrix
elements ﬁ,m,c/, are found from the condition that the energy of the system is
invariant with respect to a rigid translation:

Dkakﬂ = _jElecaj/f' (2.9)

Thus the Einstein frequencies are determined by interactions with neighbouring sites
(note the absence of tildas above the matrix elements in (2.9)), even though there is
no dispersion in the Hinstein approximation. In this approximation the free energy
of the system in the classical limit becomes

N [hD,F
Fﬁass=Ep+3kT21n[ 1D, }

Sin| 5o (2.10)

The equilibrium position of atom 4 is determined by —V,F &, = 0, which is now
straightforward to evaluate:

—V,FE =—-V,E,—%T3V,In|D,. (2.11)
7

LeSar et al. (1989) compared the estimation of the Helmholtz free energy of a perfect
Cu crystal using the above classical Einstein model with a Monte Carlo procedure in
which the quasiharmonic approximation was not made. The copper crystal was
modelled by a pairwise Morse potential truncated between the second and third
neighbours. The two sets of results are indistinguishable. They also compared the
vacancy formation free energy in the two methods. The errors range from 0 to 1.2 %
as the temperature is increased from zero up to about 75% of the melting point of
the model for Cu. This agreement is perhaps surprisingly good in view of the
approximations that are made in the classical Einstein model. Both the classical
Einstein model and the Monte Carlo procedure yield incorrect free energies at
temperatures below the Debye temperature of the model because they neglect the
quantum freezing out of modes.

Najafabadi et al. (1991 a) applied the classical Einstein model with embedded atom
potentials for gold (Foiles et al. 1986) to simulate the structural evolution and excess

Phil. Trans. R. Soc. Lond. A (1992)
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Direct free energy minimization methods 2317

thermodynamic properties of twelve (001) twist boundaries for temperatures
between 0 and 700 K. Four of the twelve grain boundaries underwent first-order
structural phase transitions as seen by the crossing of the free energy against
temperature curves for the competing structures. The grain boundary linear thermal
expansion coefficient varied with misorientation in a similar way to the excess grain
boundary entropy.

Approaches based on the local atomic environment

Sutton (1989) developed a different strategy in which neither the classical limit nor
the Einstein approximation are assumed. Returning to the Helmholtz free energy in
(2.3) we can always write the total density of states N(w) exactly as a sum of local
densities of states:

N N
Nw) = Z ni(w) = 20X y;(0?), (2.12)

j=1 j=1

where the local density of states y,;(w?) is defined by
Yi(0?) = Z]a"P0(w? — wk), (2.13)
n

and the sum is over all 3V normal modes. The Einstein model approximates y;(w?) by

three delta functions. The strategy taken by Sutton (1989) was to approximate the

local density of states by using information about the local atomic environment

through the moments theorem and the known functional form of the local density of

states at the band edges. By fitting more and more moments of the local density of

states we obtain increasingly accurate approximations to the true density of states.
Let M{® denote the pth moment of the local density of states y,(w?):

MP = J Y;(0®) 0*? dw® = J n;(w) 0** dow = pfP. (2.14)
0 0
Thus, M{? is equal to the 2pth moment, u{*”, of the local density of states n(w).
Using the moments theorem (Cyrot-Lackmann 1968) the second moment of n;(w) is
given by
=V2E,/m;. (2.15)

3
up =M = 3 By,
a=1

The first moment M) was fitted to an assumed function form for the local density
of states y,(w?). In a three dimensional crystal the density of states must vary like the
square root of ®? at the band edges. The lower band edge is always at w* = 0, and the
integral of y;(w?®) over the whole band must equal 3. The simplest choice of functional
form for y,(»?), satisfying these constraints, is the following:

yjo?) = (6/mM ) (M) = (@ =M D)L, (2.16)
This form is a semi-elliptic density of states, which is non-zero between w? = 0 and
2M V), with the centre of gravity at M (V. The corresponding local density of states
n;(w) is given by

120?

ny(w) = W(Q[L}m —w?), (2.17)

which is proportional to w? at low frequencies. At 7' = 0 K the Helmholtz free energy

Phil. Trans. R. Soc. Lond. A (1992)
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238 A. P. Sutton

differs from the potential energy due to zero point motion. Taking the limit of
T =0 in (2.3) we obtain

h h 1
F.= Ep+a§,u§l) rE,+ 1.44%§ (1P, (2.18)

Thus, at 7= 0K the Helmholtz free energy has the form of a Finnis—Sinclair
potential (Finnis & Sinclair 1984), with the square root term arising from zero point
motion. In an Einstein model the zero point energy of atom j is 1.5hw*/2n. From
(2.18) it follows that w = 0.96[x ]

At intermediate temperatures, where quantum freezing out of modes is still
important, we must use the full form of the Helmholtz free energy, equation (2.3).
In our second moment approximation this becomes

N
F=E,+3F, (2.19)
i=1
1
where F, = 4871:T J 22(1 —a?):In [2sinh (3¢, 2)] dz, (2.20)
0
and ¢, = W2uP/2nkT. (2.21)

The free energy in (2.19) comprises the potential energy £, and a sum of projections
F; of the vibrational free energy of the whole system onto individual sites. The
projection is effected by the local densities of states, which are projections of the
global density of states onto individual atomic sites. When ¢; is infinite the
temperature is zero and ¥ reduces to F,, ., given in (2.18). At the other extreme limit
where ¢, tends to zero we obtain the classical limit, which in our second moment
model is given by

Feass = 357 [In (i) +1]. (2.22)

Quantum effects begin to be important when ¢;,>1. The temperature
0, = h[2u{®/(2nk) has the meaning of a local Debye temperature.

The vibrational entropy, internal energy and specific heat may be projected onto
individual atomic sites (Sutton 1989). Expressions were also given for the mean
square displacement <{u?) and a local Griineisen parameter v,. The effective force
acting on atom ¢ is given by

—V,F = —V,B,—SiU;V,(InVE,), (2.23)
J

where Uj is the internal energy projected onto site j, which is given by

1
U, = 2477:ch£ 23(1 — %)t coth (3¢; ) d. (2.24)

Sutton (1989) applied this second moment model to a study of the thermodynamic
properties of the 22.06° twist boundary in gold. By far the most significant
structural change with increasing temperature was the increase in the boundary
expansion. A strong correlation (over 90%) was found between the local stiffness
parameter ¢;, equation (2.21) and the local hydrostatic pressure. Thus, compressed
sites are associated with low contributions to the excess vibrational entropy, specific
heat and mean square displacement and high (positive) contributions to the excess
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Direct free energy minimization methods 239

vibrational free energy and internal energy. Compressed sites are also well correlated
(over 90%) with low Griineisen constants.

Comparison of approaches

Comparing (2.23) with the force in the classical Einstein model, equation (2.11), we
see that the two are very similar in that the temperature dependent contribution is
an N-body force which depends on the third derivatives of the potential energy.
However, the determinant of D] is used in the local Einstein model, whereas the trace
of D is used in the second moment model. Thus, the off-diagonal elements of the 3 x 3
matrlx D] are taken into account in the local Einstein model, but not in the second
moment model. The off-diagonal elements of D] describe the resistance of the local
atomic environment to shear. Local shears are important modes of thermal
excitation in open crystal structures (Barron ef al. 1980). Local shears parallel to the
plane of a grain boundary are also known to be important local modes of thermal
excitation. A model that combines all the information contained in each matrix 1~)j
with a continuous density of states y;(w?), displaying square root singularities at the
band edges, would be preferable to both the classical Einstein model and the second
moment model. This may be achieved by replacing the three delta functions
representing the local density of states in the classical Einstein model by three semi-
elliptic bands, one for each Einstein mode. The effective force on atom j becomes

N 3 U 3 3
~V,F =-V,E,— 3 2T I alal)"V, D,

i=1r=1 wiv a=1f=1

i (225)
where w2, are the eigenvalues and z{) are the eigenvectors of the 3 x 3 matrix D, and
U, is the internal energy associated w1th the vth Einstein mode at atom ¢. In the high
temperature limit, where U,, becomes k7', we recover (2.11) of the classical Einstein
model. But at lower temperatures, where quantum effects reduce U,,, we obtain a
more accurate description of the forces and thermodynamic functions than in either
the local Einstein model or the second moment model of Sutton (1989). Comparing
(2.25) with the exact expression for the quasiharmonic effective force, (2.4), we see
that the off-diagonal elements (i¢#j) of the matrix p are ignored in (2.25). The
incorporation of such intersite correlations would entail taking into account higher
moments of the local densities of states.

3. Direct free energy minimization in a substitutional alloy

Consider a bicrystal containing A and B atoms. The interface may be of the
homophase type, e.g. a grain boundary separating misoriented crystals of an AB
alloy or an anti-phase boundary separating two ordered AB alloy crystals, or of the
heterophase type, e.g. an interface separating crystals of (initially) pure A and pure
B. Whatever the interface type it is assumed that a fixed number of atomic sites
exists, which limits the treatment to substitutional alloys. It is not assumed that the
positions of the atomic sites are fixed. The problem at hand is to determine the
equilibrium distribution of A and B atoms in the vicinity of the interface, at a given
temperature and pressure. The problem is still not fully defined until we specify
whether the numbers of A and B atoms are fixed or whether the chemical potentials
of A and B atoms are fixed. We assume the latter, since the crystals on either side
of the interface act as large reservoirs of A and B atoms, at fixed chemical
potentials u, and gy, which can exchange atoms with the interfacial region.
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240 A. P. Sutton

Even at equilibrium there are fluctuations in the atomic structure and solute
distribution. Thus, if we took two snapshots of the interface at different instants we
might see different positions of solute atoms. But if we averaged the position and
occupancy of each site over a large period of time we would expect, at equilibrium,
to obtain convergent values. Thus the problem at hand addresses the time averaged
atomic structure and solute distribution within the interface. The time averaged
quantities, at equilibrium, are the expectation values for those quantities computed
in the appropriate statistical ensemble. The present ensemble is a reduced grand
canonical ensemble since the numbers of A and B atoms are not fixed, but no vacant
sites are allowed. In principle we may regard the vacancies as a third alloy
component, and thereby recover the grand canonical ensemble, but in practice there
are difficulties associated with vacancies as described below.

Expressions for thermodynamic quantities

Let p, denote the occupancy of site ¢ at a given instant in time. We set p, equal to
1(0) if site 7 is occupied by a B(A) atom. Let the ensemble average of p, be (p,> = ¢,.
We call ¢, the occupancy of site ¢, with the understanding that it means the
average occupancy of the site at equilibrium. The site occupancy is a number lying
between 0 and 1. Let R, be the position of site ¢ at any given instant and let the time
average of R; be (R;) = r,. Our task is to find the site occupancies {¢;} and positions
{r,} which minimize the grand potential of the system. We shall write down an
expression for the grand potential in terms of the sets {c;} and {r;} and demand that
it is minimized with respect to these variables. These ideas first appeared in Gyorffy
& Stocks (1983) and Lundberg (1987).

We express the grand potential, 2, as follows:

Q= F(lc;}, {r}) =TS, —paNy— s Ng. (3.1)
F is the Helmholtz free energy of the ensemble excluding the configurational
entropy:

Fe, {r}) = Uled, {r) — TS, (e}, {ri}), (3.2)

where U is the internal energy, including the vibrational contribution, and S, is the
vibrational entropy. In (3.1) the configurational entropy is denoted by S.. In the
Bragg-Williams approximation for S, we assume that the configurational entropy is
that of an ideal (i.e. non-interacting) mixture of A and B atoms. This is an upper
bound because the interactions introduce correlations between the occupancies of the
sites which reduce the configurational entropy. In this approximation S, is given by

S, =—kXe¢;Inc,+(1—c)In(1—c,), (3.3)

2

N, and Ny are the numbers of A and B atoms:

Ny=2(l=¢), Ng=Zc,. (3.4)
i i
Inserting (3.2)—(3.4) into (3.1) for £ and minimizing with respect to ¢, we obtain
oF ¢\
a—%+len(1_Ck) = Ug—ta- (3.5)

At equilibrium, therefore, the local chemical potential difference, u%— %, which
equals the left-hand side of (3.5), is the same at all sites and equal to ug—p,. The
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equilibrium condition involves the difference in chemical potentials up — u, because,
in a substitutional alloy, equilibrium is attained by exchanging atoms between sites.
The variation of the oceupancy from site to site at a defect is a result of the variation
of OF /0c,. If OF /Oc,, > (g — ) then site k is occupied by an A atom almost all the
time, and, conversely 1f E)F /0c;, < (g — p4) site k is occupied by a B atom almost all
the time.

Role of configurational entropy

To lllustrate the role of the configurational entropy let us ignore the vibrational
entropy contribution so that the Helmholtz free energy, F({c,}, {r;}), reduces to the
potential energy. We assume the potential energy may be represented by a sum of
pair potentials. We denote the energy of interaction between an A atom at site ¢ and
a B atom at site j by €3® = €5}®, with the understanding that €5® is a function of
|R;— R;|. Similar symbols are used for A~A and B-B interaction. The hamiltonian of
the system is given by

% szp] 01]+2(pi“ +d ) (36)
i)
where 0,; = den® +ent —2eh®),
a; = 2 (ef®—ef™) — (up—a), (3.7)
i
@ =4 5 el
g
The connection between the grand potential and the hamiltonian is Q = —k7'InZ

where Z is the grand partition function, Z = tre™##, and g = 1/kT. To evaluate
the trace we imagine the atom positions are temporarily frozen and consider all
the states of the system characterized by the set of integers p,, p,, P, ..., each of
which can be zero or one. We can obtain a useful identity for the expectation value
{pyy = ¢, = trp, e ?* |7 by evaluating the trace in a particular way due to Callen
(1963). The result (Balcerzak 1991) is

o = pyy = {(L+e)7D), (3.8)
where vy, is the ‘local field’ at site k:

Vi =+ 2 X p; Oy (3.9)

i#k
Equation (3.8) is useful because it is an identity against which standard
approximations such as mean field theory and the auto-correlation approximation
(AA) may be tested. In the mean field approximation (MFA) correlations between the
occupancies on different sites are ignored and it is also assumed that {p}) = {p;,>".

In that case ¢, becomes A

= (1+eM™)1 (3.10)
where YEFA =0, +2 X ¢; 0. (3.11)
J#k

The physical meaning of the local field is that it is the difference between the
energy of replacing an A atom at site £ with a B atom, and (45 —u,). Comparing with
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242 A. P. Sutton
the exact result (equations (3.8) and (3.9)), it is seen that the (..} brackets have been

taken inside the exponent in the Mra. The grand partition function in the mra, ZMFA,
is readily evaluated for a given set of atomic positions and the following transparent
form for the grand potential, @“¥4 may thus be obtained:

QVFA =3 3 (Cicjeg'B"_[ci(l—cj)+cj(1_ci)]€f\jB+(l_Ci) (1—07‘)6%A)
)

i#j
+kTZ [e;Inc,+(1—¢;)In(1 —ci)]—ﬂAZ(l—ci)—MBZci. (3.12)

The first term is the internal energy, which is obtained by replacing the site
occupancy operators in the Hamiltonian, equation (3.6), by their expectation values.
The second term is the contribution from the configurational entropy. The final term
is the contribution from the chemical potentials of the A and B atoms. Thus, in the
MFA each A or B atom is replaced by a hybrid atom, which varies in the degree of its
A property or B property with the local atomic environment in a continuous and self-
consistent manner. It is easily shown that minimization of the grand potential with
respect to ¢, leads to (3.10). We may think of —0€2/0c, as a generalized force,
conjugate to the site occupancy c,. But in (3.10) the grand potential is also a function
of all the atomic coordinates in the system, through the pair potentials. We should,
therefore, minimize the grand potential with respect to all 4N variables, where N is
the total number of sites. In this way the atomic structure of the interface changes
as the degree of segregation changes, for example because the chemical potential
difference pg—u, is changed.

Surface and interface segregation

Najafabadi et al. (1991b) used embedded atom potentials (Foiles et al. 1986) in a
MFA to model surface and interfacial segregation in a Cu—Ni solid solution alloy, and
they included the vibrational entropy contribution in the classical Einstein model.
The atomic mass associated with site j was set equal to ¢;mg+ (1 —c;) m,, which is
consistent with the notion that each site is occupied by a hybrid atom. The results
of the simulations for the surface segregation profiles compared very well, layer by
layer, with Monte Carlo simulations, using the same interatomic potentials, where
the mean field, Bragg—-Williams and classical Einstein approximation are not made.
Three (001) twist boundaries were also studied with bulk alloy copper concentrations
of 10, 50 and 90 at. %. The only significant disagreement with the Monte Carlo
simulations was at the low bulk copper concentration, where the concentration of
copper in the boundary plane was overestimated by 59% in the 10.4° boundary.
However, the trends in the segregation profiles of the Monte Carlo results are well
reproduced in all boundaries studied. Not only is this new approach much faster than
Monte Carlo methods it enables excess thermodynamic state functions to be
determined as an important by-product, and it offers much greater physical insight
into the local environmental factors driving segregation.

If the composition of the interface is predicted to be quite different from that of
the bulk, or if an ordered phase is predicted at the interface while the adjoining
crystals remain compositionally disordered, the configurational entropy of the
system will be reduced. In that case, since the Bragg—Williams approximation
overestimates the configurational entropy, it may be said that the configurational
entropy of the system is lower despite the Bragg—Williams approximation. The

Phil. Trans. R. Soc. Lond. A (1992)
[ 48 ]


http://rsta.royalsocietypublishing.org/

a
///\ \\
L A

'\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Direct free enerqy minimization methods 243

Bragg-Williams approximation is therefore not a reason for concern except in those
cases where the configurational entropy is predicted to increase, such as the
compositional disordering of a grain boundary, or fault, in an ordered alloy.

Role of correlations

The mra is almost certainly more severe. Not only does this approximation ignore
correlations in the occupancies of different sites but it also ignores self-correlations.
Experience in magnetic systems (Balcerzak et al. 1990), indicates that inclusion of
self-correlations gives the largest correction to the mra. Self-correlations refer to the
fact that {p}') = <pj> rather than (p}) = {(p;>" which is assumed in mean field
theory. Using the pair potential model described above it is possible to include these
self-correlations while continuing to ignore correlations on different sites. This is
known as the auto-correlation approximation (aaA) (see Balcerzak (1991) for a
thorough discussion of the magnetic case).

Let us reconsider the grand partition function, and e## in the pair potential
model, (3.6). It is useful to rewrite exp (— /6, p;p;) as follows:

exp ﬂezypzpj - 1+pz exp ﬂawpy ]’ (313)

where we have used p/' = p,. Inserting this expression for exp (—f0,; p, p;) into e™#*
we obtain

7 = Tlexp (—f(p, a,+ ) ITTT (1—p;+pexp (— 0, p)]. (3.14)
n A E)

This equation is still exact. In the mMra term exp(—p0;p;) is replaced by

exp (—f0,;{p;>) = exp (—f0,;c;). In the aa it is replaced by

{exp (—f0;p;)> = {1+ p;(exp ( /J’f% >

} (3.15)
= 1+c;(exp (—f0,)—1) = exp — (B c;),

where &;; is defined by
&y =—(kT/c;)In[1+c;(exp (—f0,;)—1)]. (3.16)

We can think of the £, as effective interaction parameters which result from
the improved treatment of the statistical averaging. Note that as ¢;—~0 then
&, kT (1 —e 7%4), which tends to 6;; as T—0. Also, as ¢;— 1 then £;—6,;. But for
0 < ¢; < 1 the effective pair potential §; is less than 6,;. Clearly, the effective inter-
action parameters are dependent on temperature and the local concentration.

The ‘local field’, equation (3.11), the self-consistency condition (3.10), and the
grand potential equation (3.12), are precisely the same in the auto-correlation
approximation as in the MFA, except that where the interaction parameters 6,
appear in the MFaA they are replaced by the effective interaction parameters £,;. We
conclude that the only difference between the Mra and aa is the change in definition
of the local field, with the interaction parameters 0, being replaced by effective
interaction parameters £;;, which are temperature and concentration dependent.

Role of relaxation

Both the mra and aa are expected to break down when there is extensive
relaxation around solute atoms, due to a large size misfit for example, especially in
the limit of small concentrations. (In practice the same comment applies also to
Monte Carlo simulations but for different reasons.) For example, consider a single
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face centred cubic (Fcc) crystal of A atoms containing vacant sites, in which atomic
interactions are modelled by pair potentials ef;*. In this case the ‘alloy’ is between
A atoms and vacancies and it is disordered. Rather than treating each site as being
occupied (p; = 0) or vacant (p, = 1) the Mmra treats all sites in the crystal as having
the same vacancy occupancy ¢, which is determined by the following self-consistency
condition:

o= 1/ +exp (Ba—(1=0) T el (3.17)
#1

(Although we are discussing the MFa here our remarks apply equally to the aa.) We
have assumed that the vacancies are in thermal equilibrium so that their chemical
potential is zero. The failure of the mra in this case lies in the inadequacy of its
description of the relaxation around each vacancy. In reality there is relaxation
around each vacant site in the crystal which affects the formation energy to a
significant degree. This relaxation renders sites that are occupied by atoms non-
equivalent. The only form of relaxation that appears in the mean field theory is that
the lattice parameter of the Fco crystal is altered very slightly, and all sites remain
equivalent. Thus the mean field treatment essentially neglects the relaxation energy
of each vacancy. Similarly the relaxation energy in any dilute AB alloy is
underestimated in the MFa. In such cases the approximation will be most successful
where the relaxation energy is small.

Part of §3 grew out of discussions with T. Balcerzak. This research was supported by the EC under
contrast No. SC1*-CT91-0703 (TSTS).
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Discussion

P. A. MuLHERAN (Harwell Laboratory, Didcot, U.K.): As I understand it the Srolovitz
method (and presumably your method also) is to calculate a local frequency to
represent a whole phonon branch. When the atomic configuration is altered the
phonon branches change and these changes are mirrored in the local frequencies. The
way these frequencies are calculated by the Srolovitz group is reasonable provided
that the interatomic forces are short-ranged and 1 assume that this comment also
applies to your calculation. However if the forces are long-ranged as in ionic systems
the correlations between the moving ions must be considered since long-range
polarization fields contribute to the vibrational frequencies. This necessarily
precludes the use of entirely localized modes. Nevertheless we can use the same
concept provided that the ionic system has two-dimensional symmetry; we cannot
work with point or line defects.

A. P. Surron: The idea of both the local Einstein and the second moment models is
to use information about local atomic environment to characterize the local
vibrational spectrum. The information that is incorporated consists of certain local
second derivatives of the potential energy, which, as you say, are often longer-ranged
than the first derivatives of the potential energy.

Perhaps a greater concern might be the averaging over all the normal modes of the
system that is done in both of these simple models. If particular modes dominate the
vibrational properties of a defect then one would like to see them treated explicitly.
This is done only in the exact expression for the force (within the quasiharmonic
approximation) given in (2.4).

A. M. StronenaM (Harwell Laboratory, Didcot, U.K.): I think your exact theory could
be used to check a further model. Temperature-dependent empirical potentials (i.e.
refitted to crystal properties at each temperature) are used for defect studies. It is not
clear that these are fully transferrable, and a check would be useful.

A. P. Surron: Yes the exact formula, given in (2.4), would enable the consistency of
the potentials fitted to properties measured at different temperatures to be tested.
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